NMR STUDIES OF BRIDGED RING SYSTEMS. X.^{*1}

LONG-RANGE ANISOTROPIC SHIELDING EFFECTS OF AN EPOXIDE

AND AN AZIRIDINE RING

K. Tori, K. Aono, K. Kitahonoki, R. Muneyuki,Y. Takono,

H. Tanida and T. Tsuji

Shionogi Research Laboratory, Shionogi 6 Co., Ltd., Fukurhima-ku, Osoko, Japan (Eeoelred 19 April **1966)**

WHILE some doubts hove recently been aroused (I) upon the NMR signals of the bridge C–7 <u>syn–</u> and <u>anti</u>–protons in norbornene (II) and benzonorbornene (III) $\overline{}$ **assigned by us (2), wo have reported in a previous communication that the reversals** of our previous assignments in the <u>syn–</u> and <u>anti</u>–proton signals have been confirmed **by using proton spin-decoupling ond deuterotlon methods (3). Thus, It become** highly necessary to confirm assignments of the bridge proton signals of their epoxide and aziridine derivatives reported earlier (4, 5) and also to revise the long-range **anisotropic shielding values exerted by on epoxide and an miridlne ring Introduced into II and Ill (S).**

In order to remove all questions as to the assignments leading to the estimation **of magnitude of the long-range anlsotropic shielding effects of o three-membered ring, which ore in principal summarized os that a proton situated above the plain of** the ring is more shielded, whereas a proton located near in the plain of the ring or in the neighborhood of the heteroatom in the ring is less shielded (5, 6), we firstly ***' For Port IX, see Ref. (2).**

2921

synthesized anti-8-acetoxy-3-oxa-tricyclo[3.2.1.0^{2,4-exc}] octane (VIII) by epoxidation of <u>ant</u>i-7-acetoxynorbornene (VII) and compared the NMR spectrum of VIII with that of 7-acetoxynorbornane (VI).^{*2,*3} Introduction of an epoxide ring into VI causes only 0.08 p.p.m. of an upfield shift to the C-7 proton signal in VI. This fact indicates that the C-8 syn proton in VIII located within the much shielding zone of the

epoxlde ring , is less shielded owirq to the prwtimity of the oxygen atom, and accordingly, that the doublet signals ot higher fields In the compounds XI-XIII (see TABLE II) (4,5) wers conclusively proved to arlse from the C-8 @ protons.

Secondly, we confirmed the presence of long-range spin-coupling between the C-2 (C-4) protons and the C-8 proton gnti to them by using proton spin-decoupling experiments on the cumpound XIII (Y=O) and further by examining the spectrum of 2,4-dideutero-3-oxo-5,6-benzotricyclo[3.2.1.0^{2,4-exo}]octene (X) prepared from 2,3-dideuterobenzonorbornadiene (IX) (3, 7)(see FIG. 1). Similarly, spin-decoupling experiments at 100 Mc.p.s. field on the :ompounds XII, XIII (Y=NH), and XIV (Y=O, **NH) revealed the assignments of their bridge proton** ⁷ A **signals by the presence of long-range spin-couplings between the C-2 (C-4) protons and the C-8 proton** D (8%) (Ix)

anti to them. -

I

^{* 2} NMR spectra were taken with a Varian HA-l Ml spectrometer operating at 100 MC. p.s. field in the frequency sweep and TM-locked mode, by using about 5%(w/v) solutions in carbon tetrachloride containing about 1% TMS as an internal standard.

^{*&}lt;sup>3</sup> The numbering of the skeletal carbons used in this paper is conventional, and syn and gnti in II-IV are prefixed towards the n-systems, but in VIII-XV towards the **three-membered rings.**

 \mathcal{L}

FIG. 1 **NMR spectra of XIII (Y=O)(a and b) and X(c) in CC14 ot 1OOMc.p.r. Lower field park of the spectra are not shown.**

 $\overline{}$

--

l.

		Chemical shift (T)							
Compound		Bridgehead $C-1, C-4$ protons	$C-7s$	Bridge $C-7a$ protons	Olefinic protons	Ref.			
		7.80		8.79		(3)			
	(1)	7.81	8.74			(8)			
70		7.17	8.68	8.93	4.07	(3)			
	(11)	7.22			4.06	(8)			
70	(111)	6.70	8.27	8.52		(3)			
70	(IV)	7.06	-8.61	-8.25		This work (5)			
	M	5.77		8.32		This work			

TABLE I .&AM **Data on Parent Ccmpounds bramined in Carbon Tetmchloride**

In TABLE I are shown the chemical shifts of protons in the parent compounds examined, and the anisotropic shielding effects (additional shift values) due to in**troduction of an ariridine or an epoxide ring into these parent compounds are listed in TABLE II: which involves some revisions of the data earlier reported (5) and some** new data.*⁴ The anisotropic shielding values obtained from the norbornene deriv**atives, Xl, XII, and XIII, are different in signs and magnitudes, particularly for the**

^{*&#}x27; Evidence for the long-range anisotropic shielding effects characteristic of these three-membered rings was presented in a previous paper (5).

Carbon Tetrachloride												
Compound		Bridgehead Y $C-1, C-5$ protons		Additional shift value (p.p.m.) = Bridge $C-8a$ C-8s protons		Olefinic protons	Rof.					
	(XI)	NH O	-0.09 -0.21	$+0.63$	$+0.68$ ~+0.04 -0.06		(5) (5)					
	(X I)	NH O	$+0.08$ -0.06	$+0.37$ $+0.12$	-0.49 -0.49	-0.36 -0.45	This work This work ^p					
85 80	(XIII)	NH O	$+0.12$ -0.01	$+0.46$ $+0.26$	-0.45 -0.45		This work This work					
	(XIV)	NH O	-0.21 -0.28		$~10.38$ ~-0.23 $~10.37$ ~-0.28		$\langle 5 \rangle$ (5)					
	(XV)	NH O	-0.39 -0.41		\sim +0.01 ~ 0.00 $-+0.05$ $-+0.03$		(5) (5)					
s	(XVI)	NH [⊆] o₫	-0.14 -0.22				This work This work					

 $\boldsymbol{\beta}$ TABLE II Anisotropic Shielding Effects Due to an Aziridine and an Epoxide Ring in

 g Plus sign represents an upfield shift. g Derived from the data reported by J. Meinwald, S.S.Labana, L.L.Labana and G.H.Wahl, Jr., Tetrahedron Letters. No. 23,
1789 (1965). c K.Kitahonoki, K.Kotera, Y.Matsukawa, S.Miyazaki, T.Okada, H.
Takahashi and Y.Takano, Tetrahedron Letters No. 16, 1059 (1965).

 \overline{a}

bridgehead protons. The divergence can result from the difference in the molecular geometries of Xl, XII, and XIII, because the shielding of the bridgehead protons by an introduced three-membered ring might be highly sensitive to a slight change in the geometry of the tricyclic ring. *5 By comparing the long-range anisotrapic shielding effects of an aziridine ring with those of an epoxide ring (see TABLE 11), it should be **especially noted that the diamagnetic shielding porometer (AX value) in the direction perpendicular to the plain of the three-membered ring is larger in the case of an** aziridine ring than in that of an epoxide ring. This difference evidently results from the nature of heteroatoms in the rings. In connection with this point, the anisotropic **shielding effects of other kinds of three-membered rings are under active research in this laboratory.**

REFERENCES

- **1. For examples, see P .M.Subramarian, M .T .Emerson and N.A.Le&I,** J . **Or . Chem. 30, 2624 (1965); J.C.Davis, Jr. and T.V.Van Auken, J. Amer. Chem. Soc. \$3900 (1965).**
- 2. K.Tori, Y.Hata, R.Muneyuki, Y.Takano, T.Tsuji and H.Tanida, <u>Canad. J. Chem.</u> 3,928 **(1964).**
- **3. K.Tori, K.Aono,Y.Hoto, R.Muney&i, T.Tsuji and H.Tanida, Tetrahedron Letters &jQ, 9 (1966).**
- **4. K.Tori, K. Kitahormki, Y.Takano, H.Tonido and T.Tsuji, Tetrahedron Letters No. 11, 559 (1964).**
- **5. K.Tori, K.Kitohonoki, Y.Tokano, H.Tanida and T.Tsuji, Tetrahedron Letters hb. 14,869 (1965).**
- 6. K.Tori and K.Kitohonoki**, J. Amer. Chem. Soc. <u>87</u>, 386 (1965**)
- **7. T.Goto, A.Tatemotsu, Y.Hata, R.Muneyuki, H.Tanida and K.Tori, Tetrahedron \$2, (1966),:in press.**
- **8. O.V.D.Tiers, Characteristic nuclear magmtic resonance " shielding values" for anic structures Minesota Mining and Manufacturing Co., St. Paul,** Minn. (1958).
- ***5 For discussions on this point, refer to Refs. (5,6).**